A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea

نویسندگان

  • Takunari Kono
  • Sandhya Mehrotra
  • Chikako Endo
  • Natsuko Kizu
  • Mami Matusda
  • Hiroyuki Kimura
  • Eiichi Mizohata
  • Tsuyoshi Inoue
  • Tomohisa Hasunuma
  • Akiho Yokota
  • Hiroyoshi Matsumura
  • Hiroki Ashida
چکیده

Two enzymes are considered to be unique to the photosynthetic Calvin-Benson cycle: ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for CO2 fixation, and phosphoribulokinase (PRK). Some archaea possess bona fide RuBisCOs, despite not being photosynthetic organisms, but are thought to lack PRK. Here we demonstrate the existence in methanogenic archaea of a carbon metabolic pathway involving RuBisCO and PRK, which we term 'reductive hexulose-phosphate' (RHP) pathway. These archaea possess both RuBisCO and a catalytically active PRK whose crystal structure resembles that of photosynthetic bacterial PRK. Capillary electrophoresis-mass spectrometric analysis of metabolites reveals that the RHP pathway, which differs from the Calvin-Benson cycle only in a few steps, is active in vivo. Our work highlights evolutionary and functional links between RuBisCO-mediated carbon metabolic pathways in methanogenic archaea and photosynthetic organisms. Whether the RHP pathway allows for autotrophy (that is, growth exclusively with CO2 as carbon source) remains unknown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association

Methanogenesis coupled to the Wood-Ljungdahl pathway is one of the most ancient metabolisms for energy generation and carbon fixation in the Archaea. Recent results are sensibly changing our view on the diversity of methane-cycling capabilities in this Domain of Life. The availability of genomic sequences from uncharted branches of the archaeal tree has highlighted the existence of novel methan...

متن کامل

Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms.

Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) catalyses the key reaction by which inorganic carbon may be assimilated into organic carbon. Phylogenetic analyses indicate that there are three classes of bona fide RubisCO proteins, forms I, II and III, which all catalyse the same reactions. In addition, there exists another form of RubisCO, form IV, which does not catalyse RuBP...

متن کامل

PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters.

Photorespiratory carbon flux reaches up to a third of photosynthetic flux, thus contributes massively to the global carbon cycle. The pathway recycles glycolate-2-phosphate, the most abundant byproduct of RubisCO reactions. This oxygenation reaction of RubisCO and subsequent photorespiration significantly limit the biomass gains of many crop plants. Although photorespiration is a compartmentali...

متن کامل

Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation

Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and ...

متن کامل

A unique structural domain in Methanococcoides burtonii ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts as a small subunit mimic

The catalytic inefficiencies of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) often limit plant productivity. Strategies to engineer more efficient plant Rubiscos have been hampered by evolutionary constraints, prompting interest in Rubisco isoforms from non-photosynthetic organisms. The methanogenic archaeon Methanococcoides burtonii contains a Rubisco isoform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017